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Abstract The plant hormone ethylene modulates growth
and development and mediates diverse stresses and patho-
gens. Genetic studies with a laboratory reference plant,
Arabidopsis, enabled researchers first to identify and place
several key signaling components in a linear pathway for
hormone signaling. Biochemical and cellular investigations
have now led us to integrate functionally these genetically
identified factors within a signaling context. Multi-step
regulation of protein stability that accompanies phosphor-
ylation/de-phosphorylation appears to be a central and
underlying molecular mechanism. Here, we briefly sum-
marize recent findings in such post-translational regulation
of ethylene signaling factors. Based on this, we can
postulate a new framework and formulate specific questions
to unravel the emerging dynamics and complexity of
ethylene signaling.
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Ethylene in Plant Biology

Ethylene (C2H4, Eth) is produced in most, if not all, living
plant cells (Abeles et al. 1992). This hormone has important
roles in various physiological processes, such as germina-
tion, growth, development (e.g., fruit ripening), senescence,

and abscission, as well as in defense and resistance (Abeles
et al. 1992; Wang et al. 2002). Because of its wide range of
functions in the most important traits for agriculture, Eth
physiology has been intensively investigated in many crop
species and model plants (Schaller and Kieber 2002; Klee
2004).

The Eth signaling pathway has been studied mainly
through a genetics approach. For the reference plant
Arabidopsis, etiolated mutant seedlings have been screened
for a hormone-insensitive or constitutive triple response
that is manifested by an exaggerated apical hook, inhibited
root growth, and enhanced hypocotyl radial growth in the
presence of Eth (Alonso and Stepanova 2004).
Corresponding genes responsible for these mutant pheno-
types have been discovered, and the molecular identities of
positive and negative regulators have been revealed for
hormone signaling. Current biochemical studies are con-
necting these genetic factors into a hormone-signaling
context through their cellular functions (Kendrick and
Chang 2008; Yoo et al. 2009). Here, we will focus on
summarizing recent biochemical findings and unraveling
the dynamic and complex multi-step regulation of intracel-
lular Eth signaling.

Genetic Pathway of Ethylene Signaling

When endogenous developmental signals, diverse environ-
mental stresses, or pathogen infections promote Eth synthe-
sis, plant cells perceive the hormone through multiple
membrane receptors, including ETHYLENE RESPONSE1
(ETR1), ETR2, ETHYLENE RESPONSE SENSOR1
(ERS1), ERS2, and ETHYLENE INSENSITIVE4 (EIN4)
(Fig. 1; Bleecker et al. 1988; Chang et al. 1993; Hua et al.
1995, 1998; Hua and Meyerowitz 1998; Sakai et al. 1998).
These receptors are localized to the ER and can bind Eth
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(O'Malley et al. 2005; Wang et al. 2006). In the absence of
Eth, ETR1 and other receptors play negative roles in Eth
signaling, probably together with another genetically iden-
tified negative regulatory component, CONSTITUTIVE
TRIPLE RESPONSE1 (CTR1), that encodes a putative
Raf-like mitogen-activated protein kinase kinase kinase
(MAPKKK) (Kieber et al. 1993; Clark et al. 1998; Huang
et al. 2003). An ER- and Golgi-localized membrane

protein, REVERSION-TO-ETHYLENE SENSITIVITY1
(RTE1), modulates ETR1 receptor complexes (Resnick et
al. 2006; Zhou et al. 2007; Dong et al. 2008). In the
presence of Eth, the negative function of receptor–CTR1
complexes is released (Hua and Meyerowitz 1998; Wang et
al. 2006). For instance, Eth can cause protein degradation
of ETR2 and promote hormone responses in Arabidopsis
(Chen et al. 2007). Downstream of those complexes, intact
functioning of the membrane-integrated transporter-like
EIN2 appears to be necessary for Eth signaling (Alonso et
al. 1999; Guo and Ecker 2003). EIN2 accumulates in
response to Eth through the regulation of two E3 ligases,
EIN2 TARGETING F-box PROTEIN1 (ETP1) and ETP2
(Qiao et al. 2009).

EIN3, a key transcription factor in Eth signaling, also
accumulates in the presence of Eth via the control of two
E3 ligases, EIN3 BINDING F-BOX PROTEIN1 (EBF1)
and EBF2 (Chao et al. 1997; Guo and Ecker 2003;
Potuschak et al. 2003; Yanagisawa et al. 2003; Gagne et
al. 2004). EIN3 and EIN3-like 1 (EIL1) are two main
transcription activators for the expression of Eth-responsive
genes, such as ETHYLENE RESPONSE FACTOR1
(ERF1), that contain EIN3-binding sites (Solano et al.
1998; Alonso et al. 2003). ERF1 is also a transcription
activator and is involved in secondary responsive gene
expression through a GCC element. Cascades of Eth-
responsive transcription produce cellular effectors that
modulate plant growth and development. To attenuate the
perceived signaling as feedback regulation, expression of
ERS1 and ETR2 is induced as a primary response to Eth.
These receptors that are not bound by Eth suppress
hormone signaling and diminish that signaling effect.

EBF2 is also highly induced transcriptionally upon such
signaling, which may contribute to a negative feedback
mechanism by enhancing the degradation of EIN3 (Guo
and Ecker 2003; Potuschak et al. 2003; Konishi and
Yanagisawa 2008). More complicatedly, the accumulation
of EBF1 and EBF2 transcripts are under the control of a 5′
to 3′ exoribonuclease, EIN5 (Olmedo et al. 2006; Gregory
et al. 2008). These newly identified signaling factors and
their functions demonstrate that the Eth signaling pathway
is constantly checked and finely tuned in plants. Concep-
tually, multi-step regulation of protein stability by hormone
signaling factors, via proteasome activities, appears to have
a central mechanistic role that underlies signal transduction.

Regulation of Protein Stability in Ethylene Signaling

The nuclear response in Eth signaling is mainly controlled
by two transcription activators, EIN3 and EIL1 (Fig. 1;
Chao et al. 1997; Alonso et al. 2003). Protein levels of
those two factors, but not their transcript levels, are tightly
regulated by hormone signaling (Yanagisawa et al. 2003).
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Fig. 1 Updated model for ethylene intracellular signaling. Ethylene
receptor complexes comprising five partially redundant members act
together but differentially to activate CTR1 PK activity at the ER in
the absence of ethylene. Arabidopsis RTE1 is ETR1 receptor
modulator localized to ER and Golgi. CTR1 is putative MAPKKK
that might activate multiple MKKs and MPKs as cascades and
phosphorylate EIN3 and EIL1 in the nucleus. This might enhance
their affinity toward F-box proteins EBF1 and -2 to promote protein
degradation through 26S proteasome and to suppress ethylene
signaling. Upon ethylene binding to receptors, negatively acting
receptor–CTR1 complexes are inactivated, resulting in activation of
MKK9–MPK3/6 cascade, which phosphorylates EIN3 and EIL1 in the
nucleus. MKK9–MPK3/6-dependent phosphorylation of EIN3 and
EIL1 probably increases their stability by reducing their affinity
toward EBF1 and -2. It is unclear whether MKK9–MPK3/6 is
activated by a MAPKKK that differs from CTR1. EIN2 is membrane
protein that accumulates upon ethylene signaling. Its stability is under
control of two F-box proteins: ETP1 and -2. Intact EIN2 functioning is
crucial for accumulation of EIN3. EIN5 indirectly affects EBF1,2
transcript levels
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EIN3 and EIL1 proteins accumulate to a certain amount as
early as 1 h after treatment with Eth or ACC, and are
closely related to Eth-responsive transcriptome changes
(Guo and Ecker 2003; Potuschak et al. 2003; Yanagisawa et
al. 2003; Gagne et al. 2004; Binder et al. 2007). EIN3 and
EIL1 are constantly degraded through 26S proteasome
activities in the absence of Eth, but stabilized in its
presence, at least under darkness. Light seems to be another
factor that can stabilize EIN3/EIL1 (Lee et al. 2006). Thus,
proteasome inhibitors mimic the hormone effect and
stabilize these proteins in the absence of Eth. Three groups
of Eth researchers have independently identified two F-box
ubiquitin E3 ligases, EBF1 and -2, that bind EIN3 in yeasts
(Guo and Ecker 2003; Potuschak et al. 2003; Gagne et al.
2004). In the ebf1 ebf2 double knockout mutant, EIN3
accumulates and causes a constitutive Eth phenotype even in
the absence of Eth. Because EBF1 and -2 interact with EIN3
in yeasts in the absence of Eth, the E3 ligases might
recognize the unmodified form of EIN3. Those results might
imply that protein modification of EIN3 is a biochemical
mechanism for the protein to be stabilized in response to Eth.

The stability of EIN3 largely depends on EIN2 (Guo and
Ecker 2003). In ein2, EIN3 protein is hardly detected; this
lack is highly correlated with the strongest Eth-insensitive
phenotype of the mutant. EIN2 is another fast turnover
protein, for which stability is under the control of
proteasome activities, and is accumulated upon Eth signal-
ing (Fig. 1; Qiao et al. 2009). Two ubiquitin E3 ligases,
ETP1 and 2, regulate the degradation process of EIN2. In
etp1 etp2 double knockout mutants, the accumulation of
EIN2 protein can cause a constitutive Eth response in the
absence of Eth. Consistently, transgenic plants that over-
express ETP1 or ETP2 show Eth insensitivity. Neverthe-
less, it is also notable that etp1 etp2 is not saturated for the
Eth response and still reacts to ACC. Likewise, ETP1 or
ETP2 transgenic lines show a relatively weak Eth-
insensitive phenotype. These results demonstrate that Eth
signaling confers both EIN2-dependent and -independent
pathways.

In addition to the regulation of positively acting EIN3,
EIL1, and EIN2 in hormone signaling, the level of a
negatively acting ETR2 protein is also controlled via
proteasome activities upon Eth signaling (Chen et al.
2007). Similarly, the tomato ortholog NEVER RIPE (NR)
is degraded by the developmental signal in ripening fruits
in response to Eth (Zhong et al. 2008). The decline in
negatively acting receptors enhances tissue sensitivity
toward Eth signaling. So far, ETR2 is the only Arabidopsis
Eth receptor that has ligand-induced protein degradation,
but none of the E3 ligases responsible for this process has
been identified.

Taken together, it is obvious that multi-step regulation of
protein stability for Eth signaling factors has an important

role in such signaling. This type of cellular mechanism is
well established in many eukaryotic signaling pathways.
For NF-kB signaling, multi-layer regulation of protein
stability is a central mechanism that underlies innate
immunity from fly to human (Wullaerdt et al. 2006; Bhoj
and Chen 2009). It will be interesting to examine whether
other protein stability regulators might be functionally
involved in Eth signaling. We must also elucidate how
those regulator activities are modulated within the context
of hormone signaling.

Protein Phosphorylation and De-phosphorylation
in Ethylene Signaling

Unlike the abundance of biochemical and genetic analyses
for membrane receptors and nuclear transcription factors in
Eth signaling (reviewed by Yoo et al. 2009), studies of the
intracellular pathways that connect the functions of mem-
brane receptors to those of nuclear factors are rare in the
field of hormone signal transduction. Biochemical charac-
terization of Eth intracellular signaling has shown that the
hormone activates rapid and transient protein phosphoryla-
tion, which is required for the induction of Eth-responsive
gene expression in tobacco, mung bean, and pea (Raz and
Fluhr 1993; Kim et al. 1997; Kwak and Lee 1997). Eth-
responsive transcription in tobacco becomes robust when
tissues are pre-treated with protein phosphatase1 (PP1) and
PP2A inhibitor okadaic acid (Raz and Fluhr 1993). Within
the same line of evidence, enhanced ethylene response1
(eer1), which encodes one of three PP2A-A subunits,
ROOTS CURL IN NPA1 (RCN1), has been isolated as a
second enhancer of ctr1 (Larsen and Chang 2001; Larsen
and Cancel 2003). Because RCN1 is a positive regulator of
PP2A activity (Deruère et al. 1999), that fact might
implicate the functional involvement of protein phosphory-
lation/de-phosphorylation in the hormone signaling process.
More recently, a systematic survey of Eth-induced phos-
phorylation/de-phosphorylation of Arabidopsis proteins has
been conducted using a phosphor-proteomics method (Li
et al. 2009). In ein2, 224 phosphopeptides have been
recovered as candidates for Eth-responsive protein phos-
phorylation, and PRD/Gx and PDYxx have been deduced
as two highly conserved phosphorylation target motifs.
These results indicate that Eth might induce protein
phosphorylation independent of or in parallel with EIN2
during Eth signaling.

As protein kinases responsible for phosphorylation upon
Eth signaling, MAPK function has been unequivocally
demonstrated in Arabidopsis (Novikova et al. 2000;
Ouaked et al. 2003; Liu and Zhang 2004; Yoo et al. 2008;
Xu et al. 2008). Initially, the activation of protein kinase
phosphorylating myelin basic protein (MBP) was reported
for the detached leaves from 6-week-old Arabidopsis that
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responded to 1 ppm Eth within 1 h. The protein kinase was
then probed with mammalian MAPK antibodies, indicating
that Eth-induced protein kinase activities were most likely
those of MAPK in Arabidopsis (Novikova et al. 2000).
Their activities were elevated in the constitutive Eth-
responsive mutant ctr1-1, but reduced in the insensitive
mutant etr1-1. Because CTR1, an Eth-signaling negative
regulator, encodes a MAPKKK, the elevated level of
MPAK activities in ctr1-1 might imply the existence of a
distinct MPAK cascade that serves as a positive regulator of
Eth signaling. Using the immediate Eth precursor ACC as
signal, Ouaked et al. (2003) also have identified Eth-
inducible MPK6 and other unknown MPKs through their
evaluation of Arabidopsis culture cells and a sensitive
immunocomplex MAPK assay with an MPK6-specific
antibody. In ctr1-1, MPK6 activity is elevated, implying
that the constitutive Eth responses in mutants might be
mediated by such activity. ACC-dependent MPK6 activa-
tion is blocked by the receptor mutant etr1-1, but not by
ein2-1 and ein3-1 mutants, indicating that MPAK acts
between the receptor and EIN2 in the Eth signaling
pathway.

To determine the specific MAPK cascades involved in
Eth, our research group has developed a more sensitive and
specific assay that uses leaf mesophyll protoplasts to
accommodate diverse biochemical, molecular, cellular,
and genetic analyses that explore the genomics and
proteomics information available for Arabidopsis (Yoo et
al. 2008). A cell-based MAPK activity screen and an Eth-
specific reporter assay that is facilitated by constitutively
Eth-responsive ctr1-1 cells have identified two antagonistic
MAPK cascades in Eth signaling, MKK9–MPK3/6, which
comprises positively acting MAPK cascades, and CTR1,
which initiates negatively acting cascades (Fig. 1; Yoo et al.
2008). Likewise, loss-of-function mkk9 shows a broad
spectrum of Eth insensitivity, including a typical triple
response: inhibition of Eth-dependent growth, promotion of
senescence, and hypersensitivity to glucose and salt
stresses. Epistatic analysis using a transgenics approach
has indicated that MKK9 modules act downstream of the
receptor complexes, but upstream or independently of
EIN2. MKK9 localization in the nucleus upon signaling,
as well as MAPK cascade-dependent EIN3 regulation via
biochemical and site-directed mutagenesis analyses, has
demonstrated that the activities of two antagonistic MAPK
cascades are integrated into EIN3 through alternative
phosphorylation and that they modulate protein stability
and downstream transcription cascades.

Significantly, our study has yielded a new paradigm for
linking complex MAPK cascades to control quantitative
hormonal responses. Because several hormone, stress, and
defense signals can activate MKK9, MPK3, and MPK6 in
plants, it has long been questioned how converged MAPK

signaling can secure their specificity. We have shown that
Eth signaling particularly activates those MKK9–MPK3/6
modules and phosphorylates T174 of the EIN3 protein to
stabilize it. However, that signaling suppresses the CTR1-
dependent cascades that phosphorylate T592 of EIN3 to
enhance its degradation. Our results indicate that only when
both MAPK modules are cooperatively and simultaneously
regulated can Eth signaling be appropriately executed in
plants. This explains the broad but relatively weak Eth
insensitivity of mkk9, which lacks only one part of the two
MAPK cascades. Likewise, mkk9 ctr1 double mutants
display partial but clear Eth insensitivity in the presence
of light but in the absence of nutrients. Moreover, ctr1
shows a rather stronger constitutive Eth signaling pheno-
type, which most likely is contributed by the activation or
de-repression of the MKK9–MPK3/6 cascade in addition to
the loss of CTR1-dependent MAPK cascade activity.

Endogenous signals such as Eth probably do not
provoke drastic MAPK activation, as unlike exogenously
derived pathogenic elicitors or chemicals and thus it might
be challenging to monitor such a low level of MAPK
activation. This subtle and transient activation by Eth could
be due to dynamic control through both positive and
negative regulators as well as by multiple feedback
modulators (Fig. 1). Because the specific amplitude and
duration of MAPK activities are involved in determining
the signaling specificity of MAPK cascade signaling

Table 1 Ethylene-specific signaling components in Arabidopsis and
maize

Arabidopsis Maize

Class I ethylene receptors

ETR1 At1g66340 ZmERS1-14 (AY359577)

ERS1 At2g40940 ZmERS1-25 (AY359578)

Class II ethylene receptors

EIN4 At3g04580 ZmETR2-9 (AY359580)

ERS2 At1g04310 ZmETR2-40 (AY359581)

ETR2 At3G23150

Intracellular components

CTR1 At5g03730 ZmCTR1 (T233377,TC203507)

EIN2 At5g03280 ZmEIN2 (AY359584)

ETP1 At3g18980

ETP2 At3g18910

Nuclear effectors

EIN3 At3g20770 ZmEIL1-1 (AX077258)

EIL1 At2g27050 ZmEIL1-3 (AX077260)

EBF1 At2g25490 ZmEBF1 (AAN23093)

EBF2 At5g25350

Primary response factors

ERF1 At3g23240 ZmERF1 (AAT75013.1)
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(Schwartz and Madhani 2004), it will be critical to evaluate
or modulate MAPK activities quantitatively to clarify
MAPK function in specific signaling.

Prospects

Although many key signaling components in the Eth signal
transduction pathways have been described over the past
two decades, our understanding of the signaling mecha-
nisms is still limited by poor biochemical connections
among signaling factors. MKK9–MPK3/6 have now been
identified as positive MAPK cascades, but the entire group
of cascades is not yet known because its MAPKKK
member(s) are still missing (Fig. 1). As for negative MAPK
cascades, a genetically identified negative regulator, CTR1,
has a MAPKKK role in which it most likely suppresses the
positively acting MKK9 modules (Fig. 1). However, the
molecular identities of MKKs and MPKs in CTR1 cascades
are yet to be determined. In our preliminary studies, two
MKKs have demonstrated suppression of EIN3 accumula-
tion and Eth-specific reporter activity (Yoo, unpublished
data). Cell-based research has implicated these MKKs
might act downstream of CTR1.

The protein function of EIN2, which is genetically
positioned between CTR1 and EIN3, remains to be
addressed (Fig. 1). We only know that the level of EIN2
protein is under the control of an Eth-dependent protein
degradation process (Qiao et al. 2009). This protein shows
high similarity to members of the NRAMP family of metal
transporters, but transport activity has never been demon-
strated for EIN2 function in Eth signaling.

Eth-dependent EIN3 stabilization in the nucleus has been
established (Fig. 1; Guo and Ecker 2003; Potuschak et al.
2003; Yanagisawa et al. 2003; Gagne et al. 2004), but it is
still unknown how hormone signaling can modulate that
stability. It is appealing that MAPK-dependent phosphory-
lation of EIN3 may change its affinity toward cellular
proteasome processes.

The identification and functional analyses of Eth
signaling components in other crop plants have revealed a
high degree of conservation among many species. For
example, genes encoding almost every player in the Eth
signal transduction pathway in the dicot Arabidopsis have
now been found in the expressed gene databases of the
monocot maize, although ZmCTR1 and ZmEBF1 show high
divergence in their sequences (Table 1). In those plants, Eth
signaling components also have similar biochemical func-
tions (Gallie and Young 2004). Therefore, with this high
level of conservation in components and regulatory
mechanisms, our understanding of the signaling pathway
for Eth via the reference plant Arabidopsis might provide
an ideal blueprint for engineering crop genomes with a

custom-designed Eth signaling regime. This will then
maximize plant adaptability and productivity under unfa-
vorable or unexpected environmental fluctuations.
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